3,834 research outputs found

    An IUE's eye view of cool-star outer atmospheres

    Get PDF
    Three topics are discussed which together demonstrate the power of the IUE to probe the occurrences of chromospheres and coronas in the cool half of the HR diagram. These are: (1) the complementary low dispersion and echelle observing modes; (2) Mg II h and k: chromospheric cooling and width luminosity correlation; and (3) empirical correlations among chromospheric, transition region, and coronal emission. The spectra of alpha Centauri (G2 V + K1 V) and Capella (G6 III + F9 III) are compared with that of the Sun and recent low dispersion surveys of cool star emission in the 1150 A to 2000 A short wavelength region are summarized

    Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and their Isotopes

    Get PDF
    A solar photospheric "thermal profiling" analysis is presented, exploiting the infrared rovibrational bands of carbon monoxide (CO) as observed with the McMath-Pierce Fourier transform spectrometer (FTS) at Kitt Peak, and from above the Earth's atmosphere by the Shuttle-borne ATMOS experiment. Visible continuum intensities and center-limb behavior constrained the temperature profile of the deep photosphere, while CO center-limb behavior defined the thermal structure at higher altitudes. The oxygen abundance was self consistently determined from weak CO absorptions. Our analysis was meant to complement recent studies based on 3-D convection models which, among other things, have revised the historical solar oxygen (and carbon) abundance downward by a factor of nearly two; although in fact our conclusions do not support such a revision. Based on various considerations, an oxygen abundance of 700+/-100 ppm (parts per million relative to hydrogen) is recommended; the large uncertainty reflects the model sensitivity of CO. New solar isotopic ratios also are reported for 13C, 17O, and 18O.Comment: 90 pages, 19 figures (some with parts "a", "b", etc.); to be published in the Astrophysical Journal Supplement

    The Mg 2 h and k lines in a sample of dMe and dM stars

    Get PDF
    Both Mg II h and k line fluxes are presented for a sample of 4 dMe and 3 dM stars obtained with the IUE satellite in the long wavelength, low dispersion mode. The observed fluxes are converted to stellar surface flux units and the importance of chromospheric non radiative heating in this sample of M dwarf stars is intercompared. In addition, the net chromospheric radiative losses due to the Ca II H and K lines in those stars in the sample for which calibrated Ca II H and K line data exist are compared. Active region filling factors which likely give rise to the observed optical and ultraviolet chromospheric emission are estimated. The implications of the results for homogeneous, single component stellar model chromospheres analyses are discussed

    Recent atmospheric neutrino results from Soudan 2

    Get PDF
    An updated measurement of the atmospheric nu_mu/nu_e ratio-of-ratios, 0.68+-0.11+-0.06, has been obtained using a 4.6-kty exposure of the Soudan-2 iron tracking calorimeter. The L/E distributions have been analyzed for effects of nu_mu -> nu_x oscillations, and an allowed region in the Delta m^2 vs. sin^2 2 theta plane has been determined.Comment: 3 pages, 4 figures; presented at TAUP99, the 6th Int. Workshop on Topics in Astroparticle and Underground Physics, Sept. 6-10, 1999, College de France, Paris, Franc

    The cool-star spectral catalog: A uniform collection of IUE SWP-LOs

    Get PDF
    Over the past decade and a half of its operations, the International Ultraviolet Explorer has recorded low-dispersion spectrograms in the 1150-2000 A interval of more than 800 stars of late spectral type (F-M). The sub-2000 A region contains a number of emission lines that are key diagnostics of physical conditions in the high-excitation chromospheres and subcoronal 'transition zones' of such stars. Many of the sources have been observed a number of times, and the available collection of SWP-LO exposures in the IUE Archives exceeds 4,000. With support from the Astrophysics Data Program, we have assembled the archival material into a catalog of IUE far-UV fluxes of late-type stars. In order to ensure uniform processing of the spectra, we: (1) photometrically corrected the raw vidicon images with a custom version of the 1985 SWP ITF; (2) identified and eliminated, sharp cosmic-ray 'hits' by means of a spatial filter; (3) extracted the spectral traces with the 'optimal' (weighted-slit) strategy; and (4) calibrated them against a well-characterized reference source, the DA white dwarf G191-B2B. Our approach is similar to that adopted by the IUE Project for its 'Final Archive', but our implementation is specialized to the case of chromospheric emission-line sources. We measured the resulting SWP-LO spectra using a semi-autonomous algorithm that establishes a smooth continuum by numerical filtering, and then fits the significant emissions (or absorptions) by means of a constrained Bevington-type multiple-Gaussian procedure. The algorithm assigns errors to the fitted fluxes - or upper limits in the absence of a significant detection - according to a model based on careful measurements of the noise properties of the IUE's intensified SEC cameras. Here, we describe the 'visualization' strategies we adopted to ensure human-review of the semi-autonomous processing and measuring algorithms; the derivation of the noise model and the assignment of errors; and the structure of the final catalog as delivered to the Astrophysics Data System

    Visualization techniques to aid in the analysis of multispectral astrophysical data sets

    Get PDF
    The goal of this project was to support the scientific analysis of multi-spectral astrophysical data by means of scientific visualization. Scientific visualization offers its greatest value if it is not used as a method separate or alternative to other data analysis methods but rather in addition to these methods. Together with quantitative analysis of data, such as offered by statistical analysis, image or signal processing, visualization attempts to explore all information inherent in astrophysical data in the most effective way. Data visualization is one aspect of data analysis. Our taxonomy as developed in Section 2 includes identification and access to existing information, preprocessing and quantitative analysis of data, visual representation and the user interface as major components to the software environment of astrophysical data analysis. In pursuing our goal to provide methods and tools for scientific visualization of multi-spectral astrophysical data, we therefore looked at scientific data analysis as one whole process, adding visualization tools to an already existing environment and integrating the various components that define a scientific data analysis environment. As long as the software development process of each component is separate from all other components, users of data analysis software are constantly interrupted in their scientific work in order to convert from one data format to another, or to move from one storage medium to another, or to switch from one user interface to another. We also took an in-depth look at scientific visualization and its underlying concepts, current visualization systems, their contributions and their shortcomings. The role of data visualization is to stimulate mental processes different from quantitative data analysis, such as the perception of spatial relationships or the discovery of patterns or anomalies while browsing through large data sets. Visualization often leads to an intuitive understanding of the meaning of data values and their relationships by sacrificing accuracy in interpreting the data values. In order to be accurate in the interpretation, data values need to be measured, computed on, and compared to theoretical or empirical models (quantitative analysis). If visualization software hampers quantitative analysis (which happens with some commercial visualization products), its use is greatly diminished for astrophysical data analysis. The software system STAR (Scientific Toolkit for Astrophysical Research) was developed as a prototype during the course of the project to better understand the pragmatic concerns raised in the project. STAR led to a better understanding on the importance of collaboration between astrophysicists and computer scientists. Twenty-one examples of the use of visualization for astrophysical data are included with this report. Sixteen publications related to efforts performed during or initiated through work on this project are listed at the end of this report

    FK Comae Berenices, King of Spin: The COCOA-PUFS Project

    Get PDF
    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Com (HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with Hubble Space Telescope in the UV (120-300 nm), using mainly its high-performance Cosmic Origins Spectrograph, but also high-precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of time scales, over all wavelengths, during the week-long main campaign, including a large X-ray flare; "super-rotational broadening" of the far-ultraviolet "hot-lines" (e.g., Si IV 139 nm (T~80,000 K) together with chromospheric Mg II 280 nm and C II 133 nm (10,000-30,000 K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences, and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution.Comment: to be published in ApJ

    Informal Action—Adjudication—Rule Making: Some Recent Developments in Federal Administrative Law

    Get PDF
    Direct energy consumption of ICT hardware is only “half the story.” In order to get the “whole story,” energy consumption during the entire life cycle has to be taken into account. This chapter is a first step toward a more comprehensive picture, showing the “grey energy” (i.e., the overall energy requirements) as well as the releases (into air, water, and soil) during the entire life cycle of exemplary ICT hardware devices by applying the life cycle assessment method. The examples calculated show that a focus on direct energy consumption alone fails to take account of relevant parts of the total energy consumption of ICT hardware as well as the relevance of the production phase. As a general tendency, the production phase is more and more important the smaller (and the more energy-efficient) the devices are. When in use, a tablet computer is much more energy-efficient than a desktop computer system with its various components, so its production phase has a much greater relative importance. Accordingly, the impacts due to data transfer when using Internet services are also increasingly relevant the smaller the end-user device is, reaching up to more than 90 % of the overall impact when using a tablet computer.QC 20140825</p
    • …
    corecore